
Python Programming, 2/e 1 

Python Programming: 
An Introduction To 
Computer Science 

Chapter 12 
Object-Oriented Design 



Python Programming, 2/e 2 

n  To understand the process of object-
oriented design. 

n  To be able to read and understand 
object-oriented programs. 

n  To understand the concepts of 
encapsulation, polymorphism and 
inheritance as they pertain to object-
oriented design and programming.         

Objectives 



Python Programming, 2/e 3 

Objectives 
n  To be able to design moderately 

complex software using object-oriented 
design. 



Python Programming, 2/e 4 

The Process of OOD 
n  Most modern computer applications are 

designed using a data-centered view of 
computing called object-oriented design 
(OOD). 

n  The essence of OOD is describing a 
system in terms of magical black boxes 
and their interfaces. 



Python Programming, 2/e 5 

The Process of OOD 
n  Each component provides a service or set of 

services through its interface.  
n  Other components are users or clients of the 

services. 
n  A client only needs to understand the 

interface of a service – implementation details 
are not important, they may be changed and 
shouldn’t affect the client at all! 



Python Programming, 2/e 6 

The Process of OOD 
n  The component providing the service 

shouldn’t have to consider how the 
service is used – it just needs to provide 
the service “as advertised” via the 
interface. 

n  This separation of concerns makes the 
design of complex systems possible. 



Python Programming, 2/e 7 

The Process of OOD 
n  In top-down design, functions serve the 

role of the black box. 
n  Client programs can use the functions as 

long as it understands what the function 
does. 

n  How the function accomplishes its task is 
encapsulated within the function. 



Python Programming, 2/e 8 

The Process of OOD 
n  In OOD, the black boxes are objects. 
n  The magic behind the objects is in the class 

definitions. Once a class definition is written, 
we can ignore how the class works and rely 
on the external interface, its methods. 

n  You’ve seen this when using the graphics 
library – you were able to draw a circle 
without having to know all the nitty-gritty 
details encapsulated in class definitions for 
GraphWin and Circle. 



Python Programming, 2/e 9 

The Process of OOD 
n  Breaking a large problem into a set of 

cooperating classes reduces the complexity 
that must be considered to understand any 
given part of the program. Each class stands 
on its own! 

n  OOD is the process of finding and defining a 
useful set of classes for a given problem. 

n  Like design, it’s part art and part science. 
The more you design, the better you’ll get. 



Python Programming, 2/e 10 

The Process of OOD 
n  Here are some guidelines for OOD: 

n  Look for object candidates 
n  The goal is to define a set of objects that will 

be helpful in solving the problem. 
n  Start with a careful consideration of the 

problem statement – objects are usually 
described by nouns. Which nouns in your 
problem statement would be represented in 
your program? Which have interesting behavior 
or properties? 



Python Programming, 2/e 11 

The Process of OOD 
n  Look for object candidates 

n  Things that can be represented as primitive 
data types (numbers or strings) are probably 
not important object candidates. 

n  Things to look for: a grouping of related data 
items (e.g., point coordinates, employee data) 

n  Identify instance variables 
n  Once you think of some possible objects, think 

of the kinds of information each object will 
need to do its job. 



Python Programming, 2/e 12 

The Process of OOD 
n  Identify instance variables 

n  Some object attributes will have primitive data 
types, while others may be complex types that 
suggest other useful objects/classes. 

n  Strive to find good “home” classes for all the 
data in your program. 

n  Think about interfaces 
n  What operations would be required for objects 

of that class to be useful? 
n  Consider the verbs in the problem statement. 



Python Programming, 2/e 13 

The Process of OOD 
n  Think about interfaces 

n  Verbs describe actions. 
n  List the methods that the class will require. 
n  Remember – all of the manipulation of the 

object’s data should be done through the 
methods you provide. 

n  Refine the nontrivial methods 
n  Some methods will probably look like they can 

be accomplished in a few lines of code, while 
others may take more programming effort. 



Python Programming, 2/e 14 

The Process of OOD 
n  Refine the nontrivial methods 

n  Use top-down design and stepwise refinement 
to flesh out the details of the more difficult 
methods. 

n  As you’re programming, you may discover that 
some new interactions with other classes are 
needed, and you may need to add new 
methods to other classes. 

n  Sometimes you may discover a need for a 
brand-new kind of object that calls for the 
definition of another class. 



Python Programming, 2/e 15 

The Process of OOD 
n  Design iteratively 

n  It’s not unusual to bounce back and forth 
between designing new classes and adding 
methods to existing classes. 

n  Work on whatever is demanding your attention. 
n  No one designs a program top to bottom in a 

linear, systematic fashion. Make progress 
wherever progress needs to be made. 



Python Programming, 2/e 16 

The Process of OOD 
n  Try out alternatives 

n  Don’t be afraid to scrap an approach that 
doesn’t seem to be working, or to follow an 
idea and see where it leads. Good design 
involves a lot of trial and error! 

n  When you look at the programs of others, you 
are looking at finished work, not the process 
used to get there. 

n  Well-designed programs are probably not the 
result of a first try. As Fred Brooks said, “Plan 
to throw one away.” 



Python Programming, 2/e 17 

The Process of OOD 
n  Keep it simple 

n  At each step in the design, try to find the 
simplest approach that will solve the problem. 

n  Don’t design in extra complexity until it is clear 
that a more complex approach is needed. 



Python Programming, 2/e 18 

Case Study: 
Racquetball Simulation 

n  You may want to review our top-down 
design of the racquetball simulation 
from Chapter 9. 

n  We want to simulate multiple games of 
racquetball where the ability of the two 
opponents is represented by the 
probability that they win a point when 
they are serving. 



Python Programming, 2/e 19 

Case Study: 
Racquetball Simulation 

n  Inputs: 
n  Probability for player A 
n  Probability for player B 
n  The number of games to simulate 

n  Output: 
n  A nicely formatted summary of the results 



Python Programming, 2/e 20 

Case Study: 
Racquetball Simulation 

n  Previously, we ended a game when one of 
the players reached 15 points. 

n  This time, let’s also consider shutouts. If one 
player gets to 7 points before the other 
player has scored a point, the game ends. 

n  The simulation should keep track of each 
players’ wins and the number of wins that 
are shutouts. 



Python Programming, 2/e 21 

Candidate Objects and Methods 
n  Our first task – find a set of objects that could 

be useful in solving this problem. 
n  Problem statement – “Simulate a series of 

racquetball games between two players and 
record some statistics about the series of 
games.” 

n  This suggests two things 
n  Simulate a game 
n  Keep track of some statistics 



Python Programming, 2/e 22 

Candidate Objects and Methods 

n  First, let’s simulate the game. 
n  Use an object to represent a single game 

of racquetball. 
n  This game will have to keep track of some 

information, namely, the skill levels of the 
two players. 

n  Let’s call this class RBallGame. Its 
constructor requires parameters for the 
probabilities of the two players. 



Python Programming, 2/e 23 

Candidate Objects and Methods 

n  What else do we need? We need to play the 
game. 

n  We can give the class a play method that 
simulates the game until it’s over. 

n  We could then create and play a racquetball 
game with two lines of code! 

 
theGame = RBallGame(probA, probB) 

theGame.play() 



Python Programming, 2/e 24 

Candidate Objects and Methods 

n  To play several games, we just need to put a 
loop around this code. 

n  We’ll need four counts to keep track of at 
least four counts to print the results of our 
simulation: wins for A, wins for B, shutouts 
for A, and shutouts for B 

n  We could also count the number of games 
played, but we can calculate this from the 
counts above. 



Python Programming, 2/e 25 

Candidate Objects and Methods 

n  These four related pieces of information 
could be grouped into a single object, 
which could be an instance of the class 
SimStats. 

n  A SimStats object will keep track of all 
the information about a series of 
games. 



Python Programming, 2/e 26 

Candidate Objects and Methods 
n  What operations would be useful on these 

statistics? 
n  The constructor should initialize the counts to 0. 
n  We need a way to update these counts while the 

games are simulated. How can we do this? 
n  The easiest approach would be to send the entire 

game object to the method and let it extract the 
appropriate information. 

n  Once the games are done, we need a method to 
print out the results – printReport. 



Python Programming, 2/e 27 

Candidate Objects and Methods 
def main(): 
    printIntro() 
    probA, probB, n = getInputs() 
    # Play the games 
    stats = SimStats() 
    for i in range(n): 
        theGame = RBallGame(probA, probB)   # Create a new game 
        theGame.play()                      # Play it 
        stats.update(theGame)           # Get info about completed game 
    # Print the results 
    stats.printReport() 
 

n  The helper functions that print an 
introduction and get inputs should be easy. 
Let’s work on the SimStats class! 



Python Programming, 2/e 28 

Implementing SimStats 
n  The constructor for SimStats just 

needs to initialize the four counts to 0. 
n  class SimStats: 

    def __init__(self): 
        self.winA = 0 
        self.winB = 0 
        self.shutsA = 0 
        self.shutsB = 0 



Python Programming, 2/e 29 

Implementing SimStats 
n  The update method takes a game as a 

parameter and updates the four counts 
appropriately. The heading will look like 
this: 
 def update(self, aGame): 

n  We need to know the final score of the 
game, be we can’t directly access that 
information since it is an instance 
variable of aGame. 



Python Programming, 2/e 30 

Implementing SimStats 
n  We need a new method in RBallGame 

that will report the final score. 
n  Let’s call this new method getScores, 

and it will return the scores for player A 
and player B. 

n  Now the algorithm for update is 
straightforward. 



Python Programming, 2/e 31 

Implementing SimStats 
 def update(self, aGame): 
        a, b = aGame.getScores() 
        if a > b:                           # A won the game 
            self.winsA = self.winsA + 1 
            if b == 0: 
                self.shutsA = self.shutsA + 1 
        else:                               # B won the game 
            self.winsB = self.winsB + 1 
            if a == 0: 
                self.shutsB = self.shutsB + 1 



Python Programming, 2/e 32 

Implementing SimStats 
n  The only thing left is a method to print 

out the results. 
n  The method printReport will 

generate a table showing the  
n  wins 
n  win percentage 
n  shutouts 
n  and shutout percentage for each player. 



Python Programming, 2/e 33 

Implementing SimStats 
n  Here’s sample output: 

Summary of 500 games: 
 

          wins (% total)   shutouts (% wins)   
-------------------------------------------- 
Player A:   393  78.6%          72  18.3% 
Player B:   107  21.4%           8   7.5% 

n  The headings are easy to handle, but 
printing the output in nice columns is 
harder. We also need to avoid division 
by 0 when calculating percentages. 



Python Programming, 2/e 34 

Implementing SimStats 
n  Let’s move printing the lines of the 

table into the method printLine. 
n  The printLine method will need the 

player label (A or B), number of wins 
and shutouts, and the total number of 
games (for calculating percentages). 



Python Programming, 2/e 35 

Implementing SimStats 
n   def printReport(self): 

        # Print a nicely formatted report 
        n = self.winsA + self.winsB 
        print "Summary of", n , "games:" 
        print 
        print "          wins (% total)   shutouts (% wins) " 
        print "--------------------------------------------" 
        self.printLine("A", self.winsA, self.shutsA, n) 
        self.printLine("B", self.winsB, self.shutsB, n) 

n  To finish the class, we will implement 
printLine. This method makes heavy 
use of string formatting. 

n  You may want to review string 
formatting in chapter ?? 



Python Programming, 2/e 36 

Implementing SimStats 
n   def printLine(self, label, wins, shuts, n): 

        template = "Player %s:  %4d %5.1f%% %11d  %s "  
        if wins == 0:        # Avoid division by zero! 
            shutStr = "----- "  
        else: 
            shutStr = "%4.1f%%" % (float(shuts)/wins*100) 
        print template % (label, wins, float(wins)/n*100,\ 

  shuts, shutStr)  

n  We define a template for the 
information that will appear in each line. 

n  The if ensures we don’t divide by 0, 
and the template treats it as a string. 



Python Programming, 2/e 37 

Implementing RBallGame 
n  This class needs a constructor that 

accepts two probabilities as parameters, 
a play method that plays the game, 
and a getScores method that reports 
the scores. 



Python Programming, 2/e 38 

Implementing RBallGame 
n  What will a racquetball game need to know? 

n  To play the game, we need to know 
n  The probability for each player 
n  The score for each player 
n  Which player is serving 

n  The probability and score are more related to a 
particular player, while the server is a property of 
the game between the two players. 



Python Programming, 2/e 39 

Implementing RBallGame 
n  So, a game needs to know who the players 

are 
n  The players themselves could be objects that 

know their probability and score 

n  and which is serving. 

n  If the players are objects, then we need 
a class to define their behavior. Let’s 
call it Player. 



Python Programming, 2/e 40 

Implementing RBallGame 
n  The Player object will keep track of a 

player’s probability and score. 
n  When a Player is initialized, the 

probability will be passed as a 
parameter. Its score will be set to 0. 

n  Let’s develop Player as we work on 
RBallGame. 



Python Programming, 2/e 41 

Implementing RBallGame 
n  The game will need instance variables 

for the two players, and another 
variable to keep track of which player 
has service. 
 

n  class RBallGame: 
    def __init__(self, probA, probB): 
        # Create a new game having players with the given probs. 
        self.playerA = Player(probA) 
        self.playerB = Player(probB) 
        self.server = self.playerA  # Player A always serves first 



Python Programming, 2/e 42 

Implementing RBallGame 
n  Suppose we create an 

instance of 
RBallGame like this: 
theGame = RBallGame(.6, .5) 



Python Programming, 2/e 43 

Implementing RBallGame 
n  Our next step is to code how to play the 

game! 
n  In chapter 9 we developed an algorithm 

that continues to serve rallies and 
awards points or changes service as 
appropriate until the game is over. 

n  Let’s translate this algorithm into our 
object-based code! 



Python Programming, 2/e 44 

Implementing RBallGame 
n  Firstly, we need a loop that continues 

as long as the game is not over. 
n  The decision whether a game is over or 

not can only be done by looking at the 
game object itself. 

n  Let’s assume we have an isOver 
method which can be used. 



Python Programming, 2/e 45 

Implementing RBallGame 
n   def play(self): 

        # Play the game to completion 
        while not self.isOver(): 

n  Within the loop, the serving player 
needs to serve, and, based on the 
result, we decide what to do. 

n  This suggests that the Player objects 
should have a method that performs a 
serve. 



Python Programming, 2/e 46 

Implementing RBallGame 
n  Whether the serve is not depends on the 

probability stored within each player object, 
so, one can ask the server if the serve was 
won or lost! 

n   if self.server.winsServe(): 

n  Based on the result, a point is awarded or 
service changes. 

n  To award a point, the player’s score needs to 
be changed, which requires the player object 
to increment the score. 



Python Programming, 2/e 47 

Implementing RBallGame 
n  Changing servers is done at the game 

level, since this information is kept in 
the server instance variable of 
RBallGame. 

n  Here’s the completed play method: 



Python Programming, 2/e 48 

Implementing RBallGame 
n   def play(self): 

        # Play the game to completion 
        while not self.isOver(): 
            if self.server.winsServe(): 
                self.server.incScore() 
            else: 
                self.changeServer() 

n  Remember, self is an RBallGame! 
n  While this algorithm is simple, we need two 

more methods (isOver and 
changeServer) in the RBallGame class 
and two more (winServe and inScore) for 
the Player class. 



Python Programming, 2/e 49 

Implementing RBallGame 
n  Before working on these methods, let’s 

go back and finish the other top-level 
method of the RBallGame class, 
getScores, which returns the scores 
of the two players. 

n  The player objects actually know the 
scores, so we need a method that asks 
a player to return its score. 



Python Programming, 2/e 50 

Implementing RBallGame 
n   def getScores(self): 

        # RETURNS the current scores of player A and player B 
        return self.playerA.getScore(), self.playerB.getScore() 

n  This adds one more method to be 
implemented in the Player class! 
Don’t forget it!! 

n  To finish the RBallGame class, all that is 
needed is to write the isOver and 
changeServer methods (left as an 
exercise). 

 



Python Programming, 2/e 51 

Implementing Player 
n  While developing the RBallGame class, we 

discovered the need for a Player class that 
encapsulates the service probability and 
current score for a player. 

n  The Player class needs a suitable 
constructor and methods for winsServe, 
incScore, and getScore. 



Python Programming, 2/e 52 

Implementing Player 
n  In the class constructor, we need to 

initialize the instance variables. The 
probability will be passed as a variable, 
and the score is set to 0. 

n   def __init__(self, prob): 
        # Create a player with this probability 
        self.prob = prob 
        self.score = 0 



Python Programming, 2/e 53 

Implementing Player 
n  To see if a player wins a serve, 

compare the probability of service win 
to a random number between 0 and 1. 

n   def winsServe(self): 
        # RETURNS true with probability self.prob 
        return random() <= self.prob 

 



Python Programming, 2/e 54 

Implementing Player 
n  To give a player a point, we add one to 

the score. 
n   def incScore(self): 

        # Add a point to this player's score 
        self.score = self.score + 1 

n  The final method returns the value of 
the score. 

n   def getScore(self): 
     # RETURN this player's current score 

        return self.score 



Python Programming, 2/e 55 

Implementing Player 
n  You may think it’s silly to create a class 

with many one or two-line methods. 
n  This is quite common in well-

modularized, object-oriented programs. 
n  If the pieces are so simple that their 

implementation is obvious, we have 
confidence that it must be right! 



Python Programming, 2/e 56 

The Complete Program 
# objrrball.py 
#    Simulation of a racquet game. 
#    Illustrates design with objects. 
 
from random import random 
 
class Player: 
    # A Player keeps track of service probability and score 
 
    def __init__(self, prob): 
        # Create a player with this probability 
        self.prob = prob 
        self.score = 0 
 
    def winsServe(self): 
        # RETURNS true with probability self.prob 
        return random() <= self.prob 
 
    def incScore(self): 
        # Add a point to this player's score 
        self.score = self.score + 1 
 
    def getScore(self): 
        # RETURN this player's current score 
        return self.score 



Python Programming, 2/e 57 

The Complete Program 
class RBallGame: 
    # A RBallGame represents a game in progress. A game as two players 
    # and keeps track of which one is currently serving. 
 
    def __init__(self, probA, probB): 
        # Create a new game having players with the given probs. 
        self.playerA = Player(probA) 
        self.playerB = Player(probB) 
        self.server = self.playerA  # Player A always serves first 
 
    def play(self): 
        # Play the game to completion 
        while not self.isOver(): 
            if self.server.winsServe(): 
                self.server.incScore() 
            else: 
                self.changeServer() 
             
    def isOver(self): 
        # RETURNS game is finished (i.e. one of the players has won). 
        a,b = self.getScores() 
        return a == 15 or b == 15 or \ 
               (a == 7 and b == 0) or (b==7 and a == 0) 
 
    def changeServer(self): 
        # Switch which player is serving 
        if self.server == self.playerA: 
            self.server = self.playerB 
        else: 
            self.server = self.playerA 
 
    def getScores(self): 
        # RETURNS the current scores of player A and player B 
        return self.playerA.getScore(), self.playerB.getScore() 



Python Programming, 2/e 58 

The Complete Program 
 class SimStats:     # SimStatistics handles accumulation of statistics across multiple 
    #   (completed) games. This version tracks the wins and shutouts for 
    #   each player. 
 
    def __init__(self): 
        # Create a new accumulator for a series of games 
        self.winsA = 0 
        self.winsB = 0 
        self.shutsA = 0 
        self.shutsB = 0 
 
    def update(self, aGame): 
        # Determine the outcome if aGame and update statistics 
        a, b = aGame.getScores() 
         
        if a > b:                             # A won the game 
            self.winsA = self.winsA + 1 
            if b == 0: 
                self.shutsA = self.shutsA + 1 
        else:                                 # B won the game 
            self.winsB = self.winsB + 1 
            if a == 0: 
                self.shutsB = self.shutsB + 1 
 
    def printReport(self): 
        # Print a nicely formatted report 
        n = self.winsA + self.winsB 
        print "Summary of", n , "games:" 
        print 
        print "          wins (% total)   shutouts (% wins)  " 
        print "--------------------------------------------" 
        self.printLine("A", self.winsA, self.shutsA, n) 
        self.printLine("B", self.winsB, self.shutsB, n) 
         
    def printLine(self, label, wins, shuts, n): 
        template = "Player %s:  %4d %5.1f%% %11d  %s" 
        if wins == 0:        # Avoid division by zero! 
            shutStr = "-----" 
        else: 
            shutStr = "%4.1f%%" % (float(shuts)/wins*100) 
        print template % (label, wins, float(wins)/n*100, shuts, shutStr)  



Python Programming, 2/e 59 

The Complete Program 
def printIntro(): 
    print "This program simulates games of racquetball between two" 
    print 'players called "A" and "B".  The ability of each player is' 
    print "indicated by a probability (a number between 0 and 1) that" 
    print "the player wins the point when serving. Player A always" 
    print "has the first serve.\n" 
         
def getInputs(): 
    # Returns the three simulation parameters 
    a = input("What is the prob. player A wins a serve? ") 
    b = input("What is the prob. player B wins a serve? ") 
    n = input("How many games to simulate? ") 
    return a, b, n 
 
def main(): 
    printIntro() 
     
    probA, probB, n = getInputs() 
 
    # Play the games 
    stats = SimStats() 
    for i in range(n): 
        theGame = RBallGame(probA, probB) # create a new game 
        theGame.play()                    # play it 
        stats.update(theGame)             # get info about completed game 
 
    # Print the results 
    stats.printReport() 



Python Programming, 2/e 60 

Case Study: Dice Poker 
n  Objects are very useful when designing 

graphical user interfaces. 
n  Let’s look at a graphical application 

using some of the widgets developed in 
previous chapters. 



Python Programming, 2/e 61 

Program Specification 
n  Our goal is to write a program that 

allows a user to play video poker using 
dice. 

n  The program will display a hand 
consisting of five dice. 



Python Programming, 2/e 62 

Program Specification 
n  The basic rules 

n  The player starts with $100 
n  Each round costs $10 to play. This amount is 

subtracted from the user’s money at the start of 
the round. 

n  The player initially rolls a completely random hand 
(all 5 dice are rolled). 

n  The player gets two chances to enhance the hand 
by rerolling some or all of the dice. 



Python Programming, 2/e 63 

Program Specification 
n  At the end of the hand, the player’s money 

is updated according to the following 
payout schedule: 
 Hand Pay 

Two Pairs 5 

Three of a Kind 8 

Full House 
(A Pair and a Three of a Kind) 

12 

Four of a Kind 15 

Straight (1-5 or 2-6) 20 

Five of a Kind 30 



Python Programming, 2/e 64 

Program Specification 
n  Since we want a nice graphical interface, we 

will be interacting with our program through 
mouse clicks. 

n  The interface should have: 
n  The current score (amount of money) is constantly applied. 
n  The program automatically terminates if the player goes 

broke. 
n  The player may choose to quit at appropriate points during 

play. 
n  The interface will present visual cues to indicate what is 

going on at any given moment and what the valid user 
responses are. 



Python Programming, 2/e 65 

Identifying Candidate Objects 
n  The first step is to analyze the program 

description and identify some objects 
that will be useful in solving the 
problem. 

n  This game involves dice and money. Are 
they good object candidates? 

n  On their own, a single die and the 
money can be represented as numbers. 



Python Programming, 2/e 66 

Identifying Candidate Objects 
n  However, the game uses five dice, and 

we need to be able to roll all or a 
selection of the dice, as well as analyze 
the score. 

n  This can be encapsulated in a Dice 
class. 



Python Programming, 2/e 67 

Identifying Candidate Objects 
n  Here are some obvious operations to 

implement: 
n  Constructor – Create the initial collection 
n  rollAll – Assign random values to each 

of the five dice 
n  roll – Assign a random value to some 

subset of the dice, while maintaining the 
current value of the others. 



Python Programming, 2/e 68 

Identifying Candidate Objects 
n  values – Return the current values of the five 

dice 
n  score – Return the score for the dice 

n  The entire program can be thought of as an 
object. Let’s call the class PokerApp. 

n  The PokerApp object will keep track of the 
current amount of money, the dice, the 
number of rolls, etc. 

n  PokerApp will use a method called run to 
start the game. 



Python Programming, 2/e 69 

Identifying Candidate Objects 
n  Another component of the game is the user 

interface. 
n  A good way to break down the complexity of 

a more sophisticated problem is to separate 
the UI from the main program. 

n  This is often called the model-view approach, 
where the program implements some model 
and the interface is a view of the current 
state of the model. 



Python Programming, 2/e 70 

Identifying Candidate Objects 
n  We can encapsulate the decisions about the 

interface in a separate interface object. 
n  One advantage of this approach is that we 

can change the look and feel of the program 
by substituting a different interface object. 

n  Let’s call our interface object 
PokerInterface. 



Python Programming, 2/e 71 

Implementing the Model 
n  The Dice class implements a collection 

of dice, which are just changing 
numbers. 

n  The obvious representation is a list of 
five ints. The constructor needs to 
create a list and assign some initial 
values. 



Python Programming, 2/e 72 

Implementing the Model 
n   def __init__(self): 
     self.dice = [0]*5 
     self.rollAll() 

n  This code first creates a list of five 
zeroes. Then they need to be set to 
random values. 

n  We need methods to roll selected dice 
and to roll all of the dice. 



Python Programming, 2/e 73 

Implementing the Model 
n  Since rolling all dice is a special case of rolling 

selected dice, we can implement  the former 
with the latter. 

n  We can specify which dice to roll by passing a 
list of indexes. For example, 
roll([0,3,4]) will roll the dice in positions 
0, 3, and 4. 

n  We can use a loop to go through the list, 
generating a new random value for each 
listed position. 



Python Programming, 2/e 74 

Implementing the Model 
n   def roll(self, which) 

        for pos in which: 
            self.dice[pos] = randint(1,6) 

n  We can use roll to implement 
rollAll… 

n      def rollAll(self): 
        self.roll(range(5)) 

n  Here, range(5) is used to generate a 
list of all the indexes. 



Python Programming, 2/e 75 

Implementing the Model 
n  The values function returns the values 

of the dice so they can be displayed. 
n   def values(self): 

        return self.dice[:] 

n  Why did we create a copy of the dice 
list by slicing it? 

n  If a Dice client modifies the list it gets 
back from values, it will not affect the 
original copy stored in the Dice object. 



Python Programming, 2/e 76 

Implementing the Model 
n  The score method will determine the 

worth of the current dice. 
n  We need to examine the values and 

determine whether we have any of the 
patterns in the table. 

n  Let’s return a string with what the hand 
is and an int that gives the payoff 
amount. 



Python Programming, 2/e 77 

Implementing the Model 
n  We can think of this function as a multi-

way decision, checking for each possible 
hand. 

n  The order that we do the check is 
important! A full house also contains a 
three of a kind, but the payout should 
be for a full house! 



Python Programming, 2/e 78 

Implementing the Model 
n  One simple way to check the hand is to 

create a list of the counts of each value. 
n  counts[i] will be the number of times 

that i occurs in the roll. 
n  If the dice are [3,2,5,2,3], then the 

count list will be [0,0,2,2,0,1,0]. 
n  counts[0] will always be 0 since dice 

go from 1 – 6. 



Python Programming, 2/e 79 

Implementing the Model 
n  With this approach, checking for a full 

house entails looking for a 3 and a 2 in 
counts. 

n   def score(self): 
        counts = [0] * 7 
        for value in self.dice: 
            counts[value] = counts[value] + 1 

 



Python Programming, 2/e 80 

Implementing the Model 
           if 5 in counts: 

            return "Five of a Kind", 30 
        elif 4 in counts: 
            return "Four of a Kind", 15 
        elif (3 in counts) and (2 in counts): 
            return "Full House", 12 
        elif (not (3 in counts)) and (not (2 in counts)) \ 
             and (counts[1]==0 or counts[6] == 0): 
            return "Straight", 20 
        elif 3 in counts: 
            return "Three of a Kind", 8 
        elif counts.count(2) == 2: 
            return "Two Pairs", 5 
        else: 
            return "Garbage", 0 

n  Since we’ve already checked for 5, 4, and 3 of a 
kind, checking that there are no pairs -- (not (2 
in counts)) guarantees that the dice show five 
distinct values. If there is no 6, then the values must 
be 1-5, and if there is no 1, the values must be 2-6. 



Python Programming, 2/e 81 

Implementing the Model 
n  Let’s try it out! 
n  >>> from dice import Dice 

>>> d = Dice() 
>>> d.values() 
[2, 3, 2, 6, 3] 
>>> d.score() 
('Two Pairs', 5) 
>>> d.roll([3]) 
>>> d.values() 
 [2, 3, 2, 2, 3] 
>>> d.score() 
('Full House', 12) 



Python Programming, 2/e 82 

Implementing the Model 
n  We now are at the point where we can 

implement the poker game. 
n  We can use top-down design to flesh out the 

details and suggest which methods will need 
to be implemented in the PokerInterface 
class. 

n  Initially, PokerApp will need to keep track of 
the dice, the amount of money, and the 
interface. Let’s initialize these values first. 



Python Programming, 2/e 83 

Implementing the Model 
class PokerApp: 
    def __init__(self): 

        self.dice = Dice() 
        self.money = 100 
        self.interface = PokerInterface() 

n  To run the program, we create an instance of 
this class and call its run method. 

n  The program will loop, allowing the user to 
continue playing hands until they are either 
out of money or choose to quit. 



Python Programming, 2/e 84 

Implementing the Model 
n  Since it costs $10 to play a hand, we 

can continue as long as 
self.money >= 10. 

n  Determining whether the player wants 
to continue or not must come from the 
user interface. 



Python Programming, 2/e 85 

Implementing the Model 
n   def run(self): 

        while self.money >= 10 and self.interface.wantToPlay(): 
            self.playRound()             
        self.interface.close() 

n  The interface.close() call at the 
bottom will let us do any necessary clean-
up, such as printing a final message, 
closing graphics windows, etc. 

n  Now we’ll focus on the playRound 
method. 



Python Programming, 2/e 86 

Implementing the Model 
n  Each round consists of a series of rolls. 

Based on the rolls, the player’s score 
will be adjusted. 

n   def playRound(self): 
        self.money = self.money – 10 
        self.interface.setMoney(self.money) 
        self.doRolls() 
        result, score = self.dice.score() 
        self.interface.showResult(result, score) 
        self.money = self.money + score 
        self.interface.setMoney(self.money)         



Python Programming, 2/e 87 

Implementing the Model 
n  When new information is to be presented to 

the user, the proper method from 
interface is invoked. 

n  The $10 fee to play is first deducted, and the 
interface is updated with the new amount of 
money remaining. 

n  The program processes a series of rolls 
(doRolls), displays the result, and updates 
the money. 



Python Programming, 2/e 88 

Implementing the Model 
n  Lastly, we need to implement the dice rolling 

process. 
n  Initially, all the dice are rolled. 
n  Then, we need a loop that continues rolling 

user-selected dice until either the user quits 
or the limit of three rolls is reached. 

n  rolls keeps track of how many times the 
dice have been rolled. 



Python Programming, 2/e 89 

Implementing the Model 
n   def doRolls(self): 

        self.dice.rollAll() 
        roll = 1 
        self.interface.setDice(self.dice.values()) 
        toRoll = self.interface.chooseDice() 
        while roll < 3 and toRoll != []: 
            self.dice.roll(toRoll) 
            roll = roll + 1 
            self.interface.setDice(self.dice.values()) 
            if roll < 3: 
                toRoll = self.interface.chooseDice() 

n  Whew! We’ve completed the basic functions 
of our interactive poker program. 

n  We can’t test it yet because we don’t have a 
user interface… 



Python Programming, 2/e 90 

A Text-Based UI 
n  In the process of designing PokerApp, 

we also developed a specification for a 
generic PokerInterface class. 

n  The interface must support methods for 
displaying information – 
n  setMoney 
n  setDice 
n  showResult 



Python Programming, 2/e 91 

A Text-Based UI 
n  It also must have methods that allow input 

from the user – 
n  wantToPlay 
n  chooseDice 

n  These methods can be implemented in many 
different ways, producing programs that look 
quite different, even while the underlying 
model, PokerApp, remains the same. 



Python Programming, 2/e 92 

A Text-Based UI 
n  Graphical interfaces are usually more 

complicated to build, so we might want 
to build a text-based interface first for 
testing and debugging purposes. 

n  We can tweak the PokerApp class so 
that the user interface is supplied as a 
parameter to the constructor. 



Python Programming, 2/e 93 

A Text-Based UI 
n   def __init__(self, interface): 
        self.dice = Dice() 
        self.money = 100 
        self.interface = interface 

n  By setting the interface up as a 
parameter, we can easily use different 
interfaces with our poker program. 

n  Here’s a bare-bones text-based 
interface: 



Python Programming, 2/e 94 

A Text-Based UI 
n  # textinter.py 

 
class TextInterface: 
    def __init__(self): 
        print "Welcome to video poker.“ 
 
    def setMoney(self, amt): 
        print "You currently have $%d." % (amt) 
         
    def setDice(self, values): 
        print "Dice:", values 
 
    def wantToPlay(self): 
        ans = raw_input("Do you wish to try your luck? ") 
        return ans[0] in "yY“ 
 
    def close(self): 
        print "\nThanks for playing!" 



Python Programming, 2/e 95 

A Text-Based UI 
n   def showResult(self, msg, score): 

        print "%s. You win $%d." % (msg,score) 
 
 def chooseDice(self): 
        return input("Enter list of which to change ([] to stop) ") 

n  Using this interface, we can test our 
PokerApp program. Here’s a complete 
program: 
 
from pokerapp import PokerApp 
from textinter import TextInterface 
 
inter = TextInterface() 
app = PokerApp(inter) 
app.run() 

 



Python Programming, 2/e 96 

A Text-Based UI 
Welcome to video poker. 
Do you wish to try your luck? y 
You currently have $90. 
Dice: [6, 4, 1, 1, 6] 
Enter list of which to change ([] to stop) [1] 
Dice: [6, 3, 1, 1, 6] 
Enter list of which to change ([] to stop) [1] 
Dice: [6, 4, 1, 1, 6] 
Two Pairs. You win $5. 
You currently have $95. 
Do you wish to try your luck? y 
You currently have $85. 
Dice: [5, 1, 3, 6, 4] 
Enter list of which to change ([] to stop) [1] 
Dice: [5, 2, 3, 6, 4] 
Enter list of which to change ([] to stop) [] 
Straight. You win $20. 
You currently have $105. 
Do you wish to try your luck? n 
 
Thanks for playing! 
 



Python Programming, 2/e 97 

Developing a GUI 
n  Now that we’ve verified that our 

program works, we can start work on 
the GUI user interface. 

n  This new interface will support the 
various methods found in the text-
based version, and will likely have 
additional helper methods. 



Python Programming, 2/e 98 

Developing a GUI 
n  Requirements 

n  The faces of the dice and the current score will be 
continuously displayed. 

n  The setDice and setMoney methods will be 
used to change these displays. 

n  We have one output method, showResult. One 
way we can display this information is at the 
bottom of the window, in what is sometimes called 
a status bar. 



Python Programming, 2/e 99 

Developing a GUI 
n  We can use buttons to get information 

from the user. 
n  In wantToPlay, the user can choose 

between rolling the dice or quitting by 
selecting the “Roll Dice” or “Quit” buttons. 

n  To implement chooseDice, we could 
have a button to push for each die to be 
rolled. When done selecting the dice to roll, 
the “Roll Dice” button could be pushed. 



Python Programming, 2/e 100 

Developing a GUI 
n  We could allow the users to change their 

mind on which dice to choose by having 
the button be a toggle that selects/
unselects a particular die. 

n  This enhancement suggests that we want a 
way to show which dice are currently 
selected. We could easily “gray out” the 
pips on dice selected for rolling. 



Python Programming, 2/e 101 

Developing a GUI 
n  We also need a way to indicate that we 

want to stop rolling and score the dice as 
they are. One way to do this could be by 
not having any selected dice and choosing 
“Roll Dice”. A more intuitive solution would 
be to add a new button called “Score”. 

n  Now that the functional aspects are 
decided, how should the GUI look? 



Python Programming, 2/e 102 

Developing a GUI 



Python Programming, 2/e 103 

Developing a GUI 
n  Our GUI makes use of buttons and dice. We 

can reuse our Button and DieView class 
from previous chapters! 

n  We’ll use a list of Buttons as we did in the 
calculator program in Chapter 11. 

n  The buttons of the poker interface will not be 
active all of the time. E.g., the dice buttons 
are only active when the user is choosing 
dice. 



Python Programming, 2/e 104 

Developing a GUI 
n  When user input is required, the valid 

buttons for that interaction will be set 
active and the others set inactive., 
using a helper method called choose. 

n  The choose method takes a list of 
button labels as a parameter, activates 
them, and then waits for the user to 
click one of them. 



Python Programming, 2/e 105 

Developing a GUI 
n  The return value is the label of the 

button that was clicked. 
n  For example, if we are waiting for the 

user to choose either the “Roll Dice” or 
“Quit” button, we could use this code: 

 
choice = self.choose(["Roll Dice", "Quit"]) 
if choice == ("Roll Dice"): 
   … 



Python Programming, 2/e 106 

Developing a GUI 
 def choose(self, choices): 
        buttons = self.buttons 

      # activate choice buttons, deactivate others 
        for b in buttons: 
            if b.getLabel() in choices: 
                b.activate() 
            else: 
                b.deactivate() 
        # get mouse clicks until an active button is clicked 
        while True: 
            p = self.win.getMouse() 
            for b in buttons: 
                if b.clicked(p): 
                    return b.getLabel() 



Python Programming, 2/e 107 

Developing a GUI 
n  The DieView class will be basically the same 

as we used before, but we want to add a new 
feature – the ability to change the color of a 
die to indicate when it is selected for 
rerolling. 

n  The DieView constructor draws a square 
and seven circles to represent where the pips 
appear. setValue turns on the appropriate 
pips for a given value. 



Python Programming, 2/e 108 

Developing a GUI 
n  Here’s the setValue method as it was: 
 def setValue(self, value): 

        # Turn all the pips off 

        for pip in self.pips: 

            pip.setFill(self.background) 
 

        # Turn the appropriate pips back on 

        for i in self.onTable[value]: 

            self.pips[i].setFill(self.foreground) 



Python Programming, 2/e 109 

Developing a GUI 
n  We need to modify the DieView class 

by adding a setColor method to 
change the color used for drawing the 
pips. 

n  In setValue, the color of the pips is 
determined by the value of the instance 
variable foreground. 



Python Programming, 2/e 110 

Developing a GUI 
n  The algorithm for setColor seems 

straightforward. 
n  Change foreground to the new color 
n  Redraw the current value of the die 

n  The second step is similar to setValue, but 
setValue requires the value to be sent as a 
parameter, and dieView doesn’t store this 
value anywhere. Once the pips have been 
turned on the value is discarded! 



Python Programming, 2/e 111 

Developing a GUI 
n  To implement setColor, we tweak 
setValue so that it remembers the 
current value: 
self.value = value 

n  This line stores the value parameter in 
an instance variable called value. 

n  With the modification to setValue, 
setColor is a breeze. 



Python Programming, 2/e 112 

Developing a GUI 
 def setColor(self, color): 
        self.foreground = color 
        self.setValue(self.value) 

n  Notice how the last line calls setValue to 
draw the die, passing along the value from 
the last time setValue was called. 

n  Now that the widgets are under control, we 
can implement the poker GUI! The 
constructor will create all the widgets and set 
up the interface for later interactions. 



Python Programming, 2/e 113 

Developing a GUI 
class GraphicsInterface: 
 
    def __init__(self): 
        self.win = GraphWin("Dice Poker", 600, 400) 
        self.win.setBackground("green3") 
        banner = Text(Point(300,30), "Python  Poker  Parlor") 
        banner.setSize(24) 
        banner.setFill("yellow2") 
        banner.setStyle("bold") 
        banner.draw(self.win) 
        self.msg = Text(Point(300,380), "Welcome to the dice table.") 
        self.msg.setSize(18) 
        self.msg.draw(self.win) 
        self.createDice(Point(300,100), 75) 
        self.buttons = [] 
        self.addDiceButtons(Point(300,170), 75, 30) 
        b = Button(self.win, Point(300, 230), 400, 40, "Roll Dice") 
        self.buttons.append(b) 
        b = Button(self.win, Point(300, 280), 150, 40, "Score") 
        self.buttons.append(b) 
        b = Button(self.win, Point(570,375), 40, 30, "Quit") 
        self.buttons.append(b) 
        self.money = Text(Point(300,325), "$100") 
        self.money.setSize(18) 
        self.money.draw(self.win) 



Python Programming, 2/e 114 

Developing a GUI 
n  Did you notice that the creation of the dice and their 

associated buttons were moved into a couple of 
helper methods? 

n   def createDice(self, center, size): 
        center.move(-3*size,0) 
        self.dice = [] 
        for i in range(5): 
            view = ColorDieView(self.win, center, size) 
            self.dice.append(view) 
            center.move(1.5*size,0) 
 
    def addDiceButtons(self, center, width, height): 
        center.move(-3*width, 0) 
        for i in range(1,6): 
            label = "Die %d" % (i) 
            b = Button(self.win, center, width, height, label) 
            self.buttons.append(b) 
            center.move(1.5*width, 0) 

n  center is a Point variable used to calculate the positions of the widgets. 



Python Programming, 2/e 115 

Developing a GUI 
n  The methods setMoney and showResult 

display text in an interface window. Since the 
constructor created and positioned the Text 
objects, all we have to do is call setText! 

n  Similarly, the output method setDice calls 
the setValue method of the appropriate 
DieView objects in dice. 



Python Programming, 2/e 116 

Developing a GUI 
    def setMoney(self, amt): 
        self.money.setText("$%d" % (amt)) 
 
    def showResult(self, msg, score): 
        if score > 0: 
            text = "%s! You win $%d" % (msg, score) 
        else: 
            text = "You rolled %s" % (msg) 
        self.msg.setText(text) 
 
    def setDice(self, values): 
        for i in range(5): 
            self.dice[i].setValue(values[i]) 



Python Programming, 2/e 117 

Developing the GUI 
n  The wantToPlay method will wait for 

the user to click either “Roll Dice” or 
“Quit”. The chooser helper method 
can be used. 

n   def wantToPlay(self): 
     ans = self.choose(["Roll Dice", "Quit"]) 
     self.msg.setText("") 
     return ans == "Roll Dice" 

n  After the user clicks a button, setting 
msg to "" clears out any messages. 



Python Programming, 2/e 118 

Developing the GUI 
n  The chooseDice method is a little 

more complicated – it will return a list of 
the indexes of the dice the user wishes 
to roll. 

n  In our GUI, the user chooses dice by 
clicking on the corresponding button. 

n  We need to maintain a list of selected 
buttons. 



Python Programming, 2/e 119 

Developing a GUI 
n  Each time a button is clicked, that die is 

either chosen (its index appended to 
the list) or unchosen (its index removed 
from the list). 

n  The color of the corresponding 
dieView will then reflect the current 
status of the dice. 



Python Programming, 2/e 120 

Developing a GUI 
 def chooseDice(self): 
        # choices is a list of the indexes of the selected dice 
        choices = []                    # No dice chosen yet 
        while True: 
            # Wait for user to click a valid button 
            b = self.choose(["Die 1", "Die 2", "Die 3", "Die 4", "Die 5", 
                             "Roll Dice", "Score"]) 
            if b[0] == "D":             # User clicked a die button 
                i = eval(b[4]) - 1      # Translate label to die index 
                if i in choices:        # Currently selected, unselect it 
                    choices.remove(i) 
                    self.dice[i].setColor("black") 
                else:                   # Currently unselected, select it 
                    choices.append(i) 
                    self.dice[i].setColor("gray") 
            else:                       # User clicked Roll or Score 
                for d in self.dice:     # Revert appearance of all dice 
                    d.setColor("black") 
                if b == "Score":        # Score clicked, ignore choices 
                    return [] 
                elif choices != []:     # Don't accept Roll unless some 
                    return choices      # dice are actually selected 



Python Programming, 2/e 121 

Developing a GUI 
n  The only missing piece of our interface 

class is the close method. 
n  To close the graphical version, we just 

need to close the graphics window. 
n   def close(self): 
        self.win.close() 

 



Python Programming, 2/e 122 

Developing a GUI 
n  Lastly, we need a few lines to get the 

graphical poker playing program 
started! We use GraphicsInterface 
in place of TextInterface. 

n  inter = GraphicsInterface() 
app = PokerApp(inter) 
app.run() 



Python Programming, 2/e 123 

OO Concepts 
n  The OO approach helps us to produce 

complex software that is more reliable 
and cost-effective. 

n  OO is comprised of three principles: 
n  Encapsulation 
n  Polymorphism 
n  Inheritance 



Python Programming, 2/e 124 

Encapsulation 
n  As you’ll recall, objects know stuff and do 

stuff, combining data and operations. 
n  This packaging of data with a set of 

operations that can be performed on the data 
is called encapsulation. 

n  Encapsulation provides a convenient way to 
compose complex problems that corresponds 
to our intuitive view of how the world works. 



Python Programming, 2/e 125 

Encapsulation 
n  From a design standpoint, encapsulation 

separates the concerns of “what” vs. “how”. 
The implementation of an object is 
independent of its use. 

n  The implementation can change, but as long 
as the interface is preserved, the object will 
not break. 

n  Encapsulation allows us to isolate major 
design decisions, especially ones subject to 
change. 



Python Programming, 2/e 126 

Encapsulation 
n  Another advantage is that it promotes code 

reuse. It allows us to package up general 
components that can be used from one 
program to the next. 

n  The DieView and Button classes are good 
examples of this. 

n  Encapsulation alone makes a system object-
based. To be object-oriented, we must also 
have the properties of polymorphism and 
inheritance. 



Python Programming, 2/e 127 

Polymorphism 
n  Literally, polymorphism means “many 

forms.” 
n  When used in object-oriented literature, 

this refers to the fact that what an 
object does in response to a message 
(a method call) depends on the type or 
class of the object. 



Python Programming, 2/e 128 

Polymorphism 
n  Our poker program illustrated one aspect of 

this by the PokerApp class being used with 
both TextInterface and 
GraphicsInterface. 

n  When PokerApp called the showDice 
method, the TextInterface showed the 
dice one way and the GraphicsInterface 
did it another way. 



Python Programming, 2/e 129 

Polymorphism 
n  With polymorphism, a given line in a 

program may invoke a completely 
different method from one moment to 
the next. 

n  Suppose you had a list of graphics 
objects to draw on the screen – a 
mixture of Circle, Rectangle, 
Polygon, etc. 



Python Programming, 2/e 130 

Polymorphism 
n  You could draw all the items with this 

simple code: 
for obj in objects: 
    obj.draw(win) 

n  What operation does this loop really 
execute? 

n  When obj is a circle, it executes the 
draw method from the circle class, etc. 



Python Programming, 2/e 131 

Polymorphism 
n  Polymorphism gives object-oriented 

systems the flexibility for each object to 
perform an action just the way that it 
should be performed for that object. 



Python Programming, 2/e 132 

Inheritance 
n  The idea behind inheritance is that a new 

class can be defined to borrow behavior from 
another class. 

n  The new class (the one doing the borrowing) 
is called a subclass, and the other (the one 
being borrowed from) is called a superclass. 

n  This is an idea our examples have not 
included. 



Python Programming, 2/e 133 

Inheritance 
n  Say we’re building an employee 

management system. 
n  We might have a class called 
Employee that contains general 
information common to all employees. 
There might be a method called 
homeAddress that returns an 
employee’s home address. 



Python Programming, 2/e 134 

Inheritance 
n  Within the class of employees, we might 

distinguish between salaried and hourly 
employees with SalariedEmployee 
and HourlyEmployee, respectively. 

n  Each of these two classes would be a 
subclass of Employee, and would 
share the homeAddress method. 



Python Programming, 2/e 135 

Inheritance 
n  Each subclass could have its own 
monthlyPay function, since pay is computed 
differently for each class of employee. 

n  Inheritance has two benefits: 
n  We can structure the classes of a system to avoid 

duplication of operations, e.g. there is one 
homeAddress method for HourlyEmployee and 
SalariedEmployee. 

n  New classes can be based on existing classes, 
promoting code reuse. 



Python Programming, 2/e 136 

Inheritance 
n  We could have used inheritance to build the 
DieView class. 

n  Our first DieView class did not provide a 
way to change the appearance of the dir. 

n  Rather than modifying the original class 
definition, we could have left the original 
alone and created a new subclass called 
ColorDieView. 



Python Programming, 2/e 137 

Inheritance 
n  A ColorDieView is just like DieView, 

except it has an additional method! 
class ColorDieView(DieView): 
 
    def setValue(self, value): 
        self.value = value 
        DieView.setValue(self, value) 
 
    def setColor(self, color): 
        self.foreground = color 
        self.setValue(self.value) 



Python Programming, 2/e 138 

Inheritance 
n  The first line (class ColorDieView(DieView): ) says 

that we are defining a new class 
ColorDieView that is based on (i.e. is a 
subclass of) DieView. 

n  Inside the new class we define two methods. 
n  The second method, setColor, adds the 

new operation. To make it work, setValue 
also needed to be slightly modified. 



Python Programming, 2/e 139 

Inheritance 
n  The setValue method in ColorDieView 

redefines or overrides the definition of 
setValue that was provided in the DieView 
class. 

n  The setValue method in the new class first 
stores the value and then relies on the 
setValue method of the superclass 
DieView to actually draw the pips. 



Python Programming, 2/e 140 

Inheritance 
n  The normal approach to set the value, 
self.setValue(value), would refer to 
the setValue method of the 
ColorDieView class, since self is an 
instance of ColorDieView. 

n  To call the superclass’s setValue method, 
it’s necessary to put the class name where 
the object would normally go: 
DieView.setValue(self,value) 



Python Programming, 2/e 141 

Inheritance 
n  DieView.setValue(self,value) 
n  The actual object to which the method 

is applied is sent as the first parameter. 


